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Abstract-  One of the main goals of sensor networks is to 
provide accurate information about a sensing field for an 
extended period of time. The emergence of sensor 
networks as one of the dominant technology trends in the 
coming decades has posed numerous unique challenges to 
researchers. Because sensor networks may interact with 
sensitive data and/or operate in hostile unattended 
environments, it is imperative that these security concerns 
be addressed from the beginning of the system design. 
These networks are likely to be composed of hundreds, 
and potentially thousands of tiny sensor nodes, functioning 
autonomously, and in many cases. While the set of 
challenges in sensor networks are diverse, we focus on 
security of Wireless Sensor Network in this paper. We 
propose some of the security goal for Wireless Sensor 
Network. Further, security being vital to the acceptance 
and use of sensor networks for many applications; we 
have made in depth threat analysis of Wireless Sensor 
Network. We also propose some countermeasures against 
these threats in Wireless Sensor Network. So, in this paper 
we have implemented Encryption Algorithm like - AES to 
provide sufficient levels of security for protecting the 
confidentiality of the data in the WSN network. This 
paper also analyzes the performance of AES algorithm 
against Attacks in WSN Network. 
 
Keywords- WSN , Sensor node , Gateway , Security , AES. 
 

1. INTRODUCTION 
Wireless sensor networks are quickly gaining popularity 
due to the fact that they are potentially low cost 
solutions to a variety of real-world challenges. Their 
low cost provides a means to deploy large sensor arrays 
in a variety of conditions capable of performing both 
military and civilian tasks. But sensor networks also 
introduce severe resource constraints due to their lack 
of data storage and power. Both of these represent 
major obstacles to the implementation of traditional 
computer security techniques in a wireless sensor 
network. The unreliable communication channel and 
unattended operation make the security defenses even 
harder. Indeed, as pointed out in wireless sensors often 
have the processing characteristics of machines that are 
decades old (or longer), and the industrial trend is to 
reduce the cost of wireless sensors while maintaining 
similar computing power. With that in mind, many 
researchers have begun to address the challenges of 
maximizing the processing capabilities and energy 
reserves of wireless sensor nodes while also securing 
them against attackers. All aspects of the wireless 
sensor network are being examined including secure 
and efficient routing, data aggregation, group 
formation, and so on. In addition to those traditional 
security issues, we observe that many general-purpose 
sensor network techniques (particularly the early 

research) assumed that all nodes are cooperative and 
trustworthy. This is not the case for most, or much of, 
real-world wireless sensor networking applications, 
which require a certain amount of trust in the 
application in order to maintain proper network 
functionality. Researchers therefore began focusing on 
building a sensor trust model to solve the problems 
beyond the capability of cryptographic security. In 
addition, there are many attacks designed to exploit the 
unreliable communication channels and unattended 
operation of wireless sensor networks. Furthermore, due 
to the inherent unattended feature of wireless sensor 
networks, we argue that physical attacks to sensors play 
an important role in the operation of wireless sensor 
networks. Thus, we include a detailed discussion of the 
physical attacks and their corresponding defenses, 
topics typically ignored in most of the current research 
on sensor security. We classify the main aspects of 
wireless sensor network security into four major 
categories: the obstacles to sensor network security, the 
requirements of a secure wireless sensor network, 
attacks, and defensive measures. We also give a brief 
introduction of related security techniques and 
summarize the obstacles for the sensor network 
security. The security requirements of a wireless sensor 
network are listed as below: 
1.1. Obstacles of Sensor Security 
A wireless sensor network is a special network which 
has many constraints compared to a traditional 
computer network. Due to these constraints it is 
difficult to directly employ the existing security 
approaches to the area of wireless sensor networks. 
Therefore, to develop useful security mechanisms while 
borrowing the ideas from the current security 
techniques like (AES). 
 

2. WSN ARCHITECTURE 
In a typical WSN we see following network 
components – 
[A]. Sensor motes (Field devices) – Field devices are 
mounted in the process and must be capable of routing 
packets on behalf of other devices. In most cases they 
characterize or control the process or process 
equipment. A router is a special type of field device that 
does not have process sensor or control equipment and 
as such does not interface with the process itself. 
[B]. Gateway or Access points – A Gateway enables 
communication between Host application and field 
devices. 
[C].Network manager – A Network Manager is 
responsible for configuration of the network, scheduling 
communication between devices (i.e., configuring super 
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frames), management of the routing tables and 
monitoring and reporting the health of the network. 
[D].Security manager – The Security Manager is 
responsible for the generation, storage, and 
management of keys[5,18,19]. 

 
 

3.WSN SECURITY ANALYSIS 
Simplicity in Wireless Sensor Network with resource 
constrained nodes makes them extremely vulnerable to 
variety of attacks. Attackers can eavesdrop on our radio 
transmissions, inject bits in the channel, replay 
previously heard packets and many more. Securing the 
Wireless Sensor Network needs to make the network 
support all security properties: confidentiality, integrity, 
authenticity and availability. Attackers may deploy a 
few malicious nodes with similar hardware capabilities 
as the legitimate nodes that might collude to attack the 
system cooperatively. The attacker may come upon 
these malicious nodes by purchasing them separately, or 
by "turning" a few legitimate nodes by capturing them 
and physically overwriting their memory. Also, in some 
cases colluding nodes might have high-quality 
communications links available for coordinating their 
attack. Sensor nodes may not be tamper resistant and if 
an adversary compromises a node, she can extract all 
key material, data, and code stored on that node. While 
tamper resistance might be a viable defense for physical 
node compromise for some networks, we do not see it 
as a general purpose solution. Extremely effective 
tamper resistance tends to add significant per-unit cost, 
and sensor nodes are intended to be very inexpensive. 
3.1 AES (Rijndael) Overview 
Rijndael (pronounced as in "rain doll" or "rhine dahl") 
is a block cipher designed by Joan Daemen and Vincent 
Rijmen, both cryptographers in Belgium. Rijndael can 
operate over a variable-length block using variable-
length keys; the version 2 specification submitted to 
NIST describes use of a 128-, 192-, or 256-bit key to 
encrypt data blocks that are 128, 192, or 256 bits long; 
note that all nine combinations of key length and block 
length are possible. The algorithm is written in such a 
way that block length and/or key length can easily be 
extended in multiples of 32 bits and it is specifically 
designed for efficient implementation in hardware or 

software on a range of processors. The design of 
Rijndael was strongly influenced by the block cipher 
called square, also designed by Daemen and Rijmen. 

 
Structure Of AES: 

 
 
 
3.2 In Depth 
Rijndael is an iterated block cipher, meaning that the 
initial input block and cipher key undergoes multiple 
rounds of transformation before producing the output. 
Each intermediate cipher result is called a State. 
For ease of description, the block and cipher key are 
often represented as an array of columns where each 
array has 4 rows and each column represents a single 
byte (8 bits). The number of columns in an array 
representing the state or cipher key, then, can be 
calculated as the block or key length divided by 32 (32 
bits = 4 bytes). An array representing a State will 
have Nb columns, where Nb values of 4, 6, and 8 
correspond to a 128-, 192-, and 256-bit block, 
respectively. Similarly, an array representing a Cipher 
Key will have Nk columns, where Nk values of 4, 6, 
and 8 correspond to a 128-, 192-, and 256-bit key, 
respectively. An example of a 128-bit State (Nb=4) and 
192-bit Cipher Key (Nk=6) is shown below: 

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

  

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5
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The number of transformation rounds (Nr) in Rijndael 
is a function of the block length and key length, and is 
given by the table below: 

No. of Rounds 
Nr 

Block Size 

128 bits 
Nb = 4 

192 bits
Nb = 6 

256 bits 
Nb = 8 

Key 
Size 

128 bits 
Nk = 4 

10 12 14 

192 bits 
Nk = 6 

12 12 14 

256 bits 
Nk = 8 

14 14 14 

 
Now, having said all of this, the AES version of 
Rijndael does not support all nine combinations of 
block and key lengths, but only the subset using a 128-
bit block size. NIST calls these supported variants AES-
128, AES-192, and AES-256 where the number refers 
to the key size. The Nb, Nk, and Nr values supported in 
AES are: 

Parameters 

Variant Nb Nk Nr 

AES-128 4 4 10 

AES-192 4 6 12 

AES-256 4 8 14 

 
The AES/Rijndael cipher itself has three operational 
stages: 
 AddRound Key transformation 
 Nr-1 Rounds comprising: 
 SubBytes transformation 
 ShiftRows transformation 
 MixColumns transformation 
 AddRoundKey transformation 
 A final Round comprising: 
 SubBytes transformation 
 ShiftRows transformation 
 AddRoundKey transformation 
The paragraphs below will describe the operations 
mentioned above. The nomenclature used below is 
taken from the AES specification although references to 
the Rijndael specification are made for completeness. 
The arrays s and s' refer to the State before and after a 
transformation, respectively (NOTE: The Rijndael 
specification uses the array nomenclature a and b to 
refer to the before and after States, respectively). The 
subscripts i and j are used to indicate byte locations 
within the State (or Cipher Key) array. 
The SubBytes transformation 
The substitute bytes (called ByteSub in Rijndael) 
transformation operates on each of the State bytes 
independently and changes the byte value. An S-box, 
or substitution table, controls the transformation. The 
characteristics of the S-box transformation as well as a 
compliant S-box table are provided in the AES 
specification; as an example, an input State byte value 
of 107 (0x6b) will be replaced with a 127 (0x7f) in the 
output State and an input value of 8 (0x08) would be 
replaced with a 48 (0x30). 
One way to think of the SubBytes transformation is that 
a given byte in State s is given a new value in State s' 

according to the S-box. The S-box, then, is a function 
on a byte in State s so that: 
s'i,j = S-box (si,j) 
The more general depiction of this transformation is 
shown by: 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

=
 

S-box 
 

= 
 

s'0,0 s'0,1 s'0,2 s'0,3 

s'1,0 s'1,1 s'1,2 s'1,3 

s'2,0 s'2,1 s'2,2 s'2,3 

s'3,0 s'3,1 s'3,2 s'3,3 
 

 
The ShiftRows transformation 
The shift rows (called ShiftRow in Rijndael) 
transformation cyclically shifts the bytes in the bottom 
three rows of the State array. According to the more 
general Rijndael specification, rows 2, 3, and 4 are 
cyclically left-shifted by C1, C2, and C3 bytes, 
respectively, per the table below: 

Nb C1 C2 C3 

4 1 2 3 

6 1 2 3 

8 1 3 4 

The current version of AES, of course, only allows a 
block size of 128 bits (Nb = 4) so that C1=1, C2=2, and 
C3=3. The diagram below shows the effect of the 
ShiftRows transformation on State s: 

State s 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 
 

  

---------no shift ----->  

--> left-shift by C1(1) -->  

--> left-shift by C2(2) -->  

--> left-shift by C3(3) -->  

State s' 

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 
 

 
The MixColumns transformation 
The mix columns (called MixColumn in Rijndael) 
transformation uses a mathematical function to 
transform the values of a given column within a State, 
acting on the four values at one time as if they 
represented a four-term polynomial. In essence, if you 
think of MixColumns as a function, this could be 
written: 
s'i,c = MixColumns (si,c) 
for 0<=i<=3 for some column, c. The column position 
doesn't change, merely the values within the column. 
Round Key generation and the AddRoundKey 
transformation 
The AES Cipher Key can be 128, 192, or 256 bits in 
length. The Cipher Key is used to derive a different key 
to be applied to the block during each round of the 
encryption operation. These keys are called the Round 
Keys and each will be the same length as the block, 
i.e., Nb 32-bit words (words will be denoted W). 
The AES specification defines a key schedule by which 
the original Cipher Key (of length Nk 32-bit words) is 
used to form an Expanded Key. The Expanded Key size 
is equal to the block size times the number of 
encryption rounds plus 1, which will provide Nr+1 
different keys. (Note that there are Nr encipherment 
rounds but Nr+1 AddRoundKey transformations.) 
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Expanded 
Key: 

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 ... W44 W45 W46 W47 W48 W49 W50 W51 

Round 
keys: 

Round key 0 Round key 1 Round key 2 Round key 3 ... Round key 11 Round key 12 

 
Consider that AES uses a 128-bit block and either 10, 
12, or 14 iterative rounds depending upon key length. 
With a 128-bit key, for example, we would need 1408 
bits of key material (128x11=1408), or an Expanded 
Key size of 44 32-bit words (44x32=1408). Similarly, a 
192-bit key would require 1664 bits of key material 
(128x13), or 52 32-bit words, while a 256-bit key 
would require 1920 bits of key material (128x15), or 60 
32-bit words. The key expansion mechanism, then, 
starts with the 128-, 192-, or 256-bit Cipher Key and 
produces a 1408-, 1664-, or 1920-bit Expanded Key, 
respectively. The original Cipher Key occupies the first 
portion of the Expanded Key and is used to produce the 
remaining new key material. 
The result is an Expanded Key that can be thought of 
and used as 11, 13, or 15 separate keys, each used for 
one AddRoundKey operation. These, then, are 
the Round Keys. The diagram below shows an example 
using a 192-bit Cipher Key (Nk=6), shown in magenta 
italics: 
The AddRoundKey (called Round Key addition in 
Rijndael) transformation merely applies each Round 
Key, in turn, to the State by a simple bit-wise exclusive 
OR operation. Recall that each Round Key is the same 
length as the block. 

SUMMARY 
Recall from the beginning of the AES overview that the 
cipher itself comprises a number of rounds of just a few 
functions: 
 SubBytes takes the value of a word within a State 

and substitutes it with another value by a 
predefined S-box 

 ShiftRows circularly shifts each row in the State by 
some number of predefined bytes 

 MixColumns takes the value of a 4-word column 
within the State and changes the four values using a 
predefined mathematical function 

 AddRoundKey XORs a key that is the same length 
as the block, using an Expanded Key derived from 
the original Cipher Key 

 
As a last and final demonstration of the operation of 
AES, above Figure  is a pseudocode listing for the 
operation of the AES cipher. In the code: 
 in[] and out[] are 16-byte arrays with the plaintext 

and cipher text, respectively. (According to the 
specification, both of these arrays are actually 
4*Nb bytes in length but Nb=4 in AES.) 

 state[] is a 2-dimensional array containing bytes in 
4 rows and 4 columns. (According to the 
specification, this arrays is 4 rows by Nb columns.) 

 w[] is an array containing the key material and is 
4*(Nr+1) words in length. (Again, according to the 
specification, the multiplier is actually Nb.) 

 AddRoundKey(), SubBytes(), ShiftRows(), 
and MixColumns() are functions representing the 
individual transformations. 

 

Cipher (byte in[4*Nb], byte out[4*Nb], word 
w[Nb*(Nr+1)]) 
begin 
  byte state[4,Nb] 
 
  state = in 
 
  AddRoundKey(state, w) 
 
  for round = 1 step 1 to Nr-1 
    SubBytes(state) 
    ShiftRows(state) 
    MixColumns(state) 
    AddRoundKey(state, w+round*Nb) 
  end for 
 
  SubBytes(state) 
  ShiftRows(state) 
  AddRoundKey(state, w+Nr*Nb) 
 
  out = state 
end 
 
 AES pseudocode. 

 
IMPLEMENTATIONS 

 Optimized Software Implementation. The pure 
software implementation is bounded by the 
load/store behavior and byte arithmetic of the 
algorithm. The encryption requires 774 cycles per 
block on a MIPS32 processor and the decryption 
requires 837 cycles. 

 AES Primitives. This is the simplest form of 
Vocal's hardware acceleration. The AES Primitives 
extend the capabilities of the MIPS32 processor by 
taking advantage of MIPS Technologies CorExtend 
capability to decrease the number of cycles to 393 
cycles to encrypt and 460 cycles to decrypt per 
block on the MIPS32 processor. 

 AES Round Accelerator. The Round Accelerator 
requires 1024 bytes of local memory, but increases 
the performance to 117 cycles per block to encrypt 
and 127 cycles per block to decrypt. 

 AES 32-bit Block Accelerator. The Block 
Accelerator is designed to be a good mid-scale 
solution. It uses 2048 bytes of local memory. The 
number of cycles to process a block on a MIPS32 
cpu falls to 64 cycles for both encryption and 
decryption using this implementation. 

 AES 32-bit Co-Processor. The Co-Processor 
implementation uses 2048 bytes of memory to 
deliver performance of 45 cycles per block on the 
MIPS32. 

 AES 64-bit Co-Processor. The same amount of the 
memory is required for the 64-bit implementation, 
but the performance increases to just 25 cycles per 
block on the MIPS32. 
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