

Secure Data in Wireless Sensor Network via AES
(Advanced Encryption Standard)

P.D. Khambre 1,S.S.Sambhare2, P.S. Chavan1

1 BVUCOE,Pune
2PCCOE,Pune

Abstract- One of the main goals of sensor networks is to
provide accurate information about a sensing field for an
extended period of time. The emergence of sensor
networks as one of the dominant technology trends in the
coming decades has posed numerous unique challenges to
researchers. Because sensor networks may interact with
sensitive data and/or operate in hostile unattended
environments, it is imperative that these security concerns
be addressed from the beginning of the system design.
These networks are likely to be composed of hundreds,
and potentially thousands of tiny sensor nodes, functioning
autonomously, and in many cases. While the set of
challenges in sensor networks are diverse, we focus on
security of Wireless Sensor Network in this paper. We
propose some of the security goal for Wireless Sensor
Network. Further, security being vital to the acceptance
and use of sensor networks for many applications; we
have made in depth threat analysis of Wireless Sensor
Network. We also propose some countermeasures against
these threats in Wireless Sensor Network. So, in this paper
we have implemented Encryption Algorithm like - AES to
provide sufficient levels of security for protecting the
confidentiality of the data in the WSN network. This
paper also analyzes the performance of AES algorithm
against Attacks in WSN Network.

Keywords- WSN , Sensor node , Gateway , Security , AES.

1. INTRODUCTION
Wireless sensor networks are quickly gaining popularity
due to the fact that they are potentially low cost
solutions to a variety of real-world challenges. Their
low cost provides a means to deploy large sensor arrays
in a variety of conditions capable of performing both
military and civilian tasks. But sensor networks also
introduce severe resource constraints due to their lack
of data storage and power. Both of these represent
major obstacles to the implementation of traditional
computer security techniques in a wireless sensor
network. The unreliable communication channel and
unattended operation make the security defenses even
harder. Indeed, as pointed out in wireless sensors often
have the processing characteristics of machines that are
decades old (or longer), and the industrial trend is to
reduce the cost of wireless sensors while maintaining
similar computing power. With that in mind, many
researchers have begun to address the challenges of
maximizing the processing capabilities and energy
reserves of wireless sensor nodes while also securing
them against attackers. All aspects of the wireless
sensor network are being examined including secure
and efficient routing, data aggregation, group
formation, and so on. In addition to those traditional
security issues, we observe that many general-purpose
sensor network techniques (particularly the early

research) assumed that all nodes are cooperative and
trustworthy. This is not the case for most, or much of,
real-world wireless sensor networking applications,
which require a certain amount of trust in the
application in order to maintain proper network
functionality. Researchers therefore began focusing on
building a sensor trust model to solve the problems
beyond the capability of cryptographic security. In
addition, there are many attacks designed to exploit the
unreliable communication channels and unattended
operation of wireless sensor networks. Furthermore, due
to the inherent unattended feature of wireless sensor
networks, we argue that physical attacks to sensors play
an important role in the operation of wireless sensor
networks. Thus, we include a detailed discussion of the
physical attacks and their corresponding defenses,
topics typically ignored in most of the current research
on sensor security. We classify the main aspects of
wireless sensor network security into four major
categories: the obstacles to sensor network security, the
requirements of a secure wireless sensor network,
attacks, and defensive measures. We also give a brief
introduction of related security techniques and
summarize the obstacles for the sensor network
security. The security requirements of a wireless sensor
network are listed as below:
1.1. Obstacles of Sensor Security
A wireless sensor network is a special network which
has many constraints compared to a traditional
computer network. Due to these constraints it is
difficult to directly employ the existing security
approaches to the area of wireless sensor networks.
Therefore, to develop useful security mechanisms while
borrowing the ideas from the current security
techniques like (AES).

2. WSN ARCHITECTURE
In a typical WSN we see following network
components –
[A]. Sensor motes (Field devices) – Field devices are
mounted in the process and must be capable of routing
packets on behalf of other devices. In most cases they
characterize or control the process or process
equipment. A router is a special type of field device that
does not have process sensor or control equipment and
as such does not interface with the process itself.
[B]. Gateway or Access points – A Gateway enables
communication between Host application and field
devices.
[C].Network manager – A Network Manager is
responsible for configuration of the network, scheduling
communication between devices (i.e., configuring super

P.D. Khambre et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3588-3592

3588

frames), management of the routing tables and
monitoring and reporting the health of the network.
[D].Security manager – The Security Manager is
responsible for the generation, storage, and
management of keys[5,18,19].

3.WSN SECURITY ANALYSIS
Simplicity in Wireless Sensor Network with resource
constrained nodes makes them extremely vulnerable to
variety of attacks. Attackers can eavesdrop on our radio
transmissions, inject bits in the channel, replay
previously heard packets and many more. Securing the
Wireless Sensor Network needs to make the network
support all security properties: confidentiality, integrity,
authenticity and availability. Attackers may deploy a
few malicious nodes with similar hardware capabilities
as the legitimate nodes that might collude to attack the
system cooperatively. The attacker may come upon
these malicious nodes by purchasing them separately, or
by "turning" a few legitimate nodes by capturing them
and physically overwriting their memory. Also, in some
cases colluding nodes might have high-quality
communications links available for coordinating their
attack. Sensor nodes may not be tamper resistant and if
an adversary compromises a node, she can extract all
key material, data, and code stored on that node. While
tamper resistance might be a viable defense for physical
node compromise for some networks, we do not see it
as a general purpose solution. Extremely effective
tamper resistance tends to add significant per-unit cost,
and sensor nodes are intended to be very inexpensive.
3.1 AES (Rijndael) Overview
Rijndael (pronounced as in "rain doll" or "rhine dahl")
is a block cipher designed by Joan Daemen and Vincent
Rijmen, both cryptographers in Belgium. Rijndael can
operate over a variable-length block using variable-
length keys; the version 2 specification submitted to
NIST describes use of a 128-, 192-, or 256-bit key to
encrypt data blocks that are 128, 192, or 256 bits long;
note that all nine combinations of key length and block
length are possible. The algorithm is written in such a
way that block length and/or key length can easily be
extended in multiples of 32 bits and it is specifically
designed for efficient implementation in hardware or

software on a range of processors. The design of
Rijndael was strongly influenced by the block cipher
called square, also designed by Daemen and Rijmen.

Structure Of AES:

3.2 In Depth
Rijndael is an iterated block cipher, meaning that the
initial input block and cipher key undergoes multiple
rounds of transformation before producing the output.
Each intermediate cipher result is called a State.
For ease of description, the block and cipher key are
often represented as an array of columns where each
array has 4 rows and each column represents a single
byte (8 bits). The number of columns in an array
representing the state or cipher key, then, can be
calculated as the block or key length divided by 32 (32
bits = 4 bytes). An array representing a State will
have Nb columns, where Nb values of 4, 6, and 8
correspond to a 128-, 192-, and 256-bit block,
respectively. Similarly, an array representing a Cipher
Key will have Nk columns, where Nk values of 4, 6,
and 8 correspond to a 128-, 192-, and 256-bit key,
respectively. An example of a 128-bit State (Nb=4) and
192-bit Cipher Key (Nk=6) is shown below:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5

P.D. Khambre et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3588-3592

3589

The number of transformation rounds (Nr) in Rijndael
is a function of the block length and key length, and is
given by the table below:

No. of Rounds
Nr

Block Size

128 bits
Nb = 4

192 bits
Nb = 6

256 bits
Nb = 8

Key
Size

128 bits
Nk = 4

10 12 14

192 bits
Nk = 6

12 12 14

256 bits
Nk = 8

14 14 14

Now, having said all of this, the AES version of
Rijndael does not support all nine combinations of
block and key lengths, but only the subset using a 128-
bit block size. NIST calls these supported variants AES-
128, AES-192, and AES-256 where the number refers
to the key size. The Nb, Nk, and Nr values supported in
AES are:

Parameters

Variant Nb Nk Nr

AES-128 4 4 10

AES-192 4 6 12

AES-256 4 8 14

The AES/Rijndael cipher itself has three operational
stages:
 AddRound Key transformation
 Nr-1 Rounds comprising:
 SubBytes transformation
 ShiftRows transformation
 MixColumns transformation
 AddRoundKey transformation
 A final Round comprising:
 SubBytes transformation
 ShiftRows transformation
 AddRoundKey transformation
The paragraphs below will describe the operations
mentioned above. The nomenclature used below is
taken from the AES specification although references to
the Rijndael specification are made for completeness.
The arrays s and s' refer to the State before and after a
transformation, respectively (NOTE: The Rijndael
specification uses the array nomenclature a and b to
refer to the before and after States, respectively). The
subscripts i and j are used to indicate byte locations
within the State (or Cipher Key) array.
The SubBytes transformation
The substitute bytes (called ByteSub in Rijndael)
transformation operates on each of the State bytes
independently and changes the byte value. An S-box,
or substitution table, controls the transformation. The
characteristics of the S-box transformation as well as a
compliant S-box table are provided in the AES
specification; as an example, an input State byte value
of 107 (0x6b) will be replaced with a 127 (0x7f) in the
output State and an input value of 8 (0x08) would be
replaced with a 48 (0x30).
One way to think of the SubBytes transformation is that
a given byte in State s is given a new value in State s'

according to the S-box. The S-box, then, is a function
on a byte in State s so that:
s'i,j = S-box (si,j)
The more general depiction of this transformation is
shown by:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

=

S-box

=

s'0,0 s'0,1 s'0,2 s'0,3

s'1,0 s'1,1 s'1,2 s'1,3

s'2,0 s'2,1 s'2,2 s'2,3

s'3,0 s'3,1 s'3,2 s'3,3

The ShiftRows transformation
The shift rows (called ShiftRow in Rijndael)
transformation cyclically shifts the bytes in the bottom
three rows of the State array. According to the more
general Rijndael specification, rows 2, 3, and 4 are
cyclically left-shifted by C1, C2, and C3 bytes,
respectively, per the table below:

Nb C1 C2 C3

4 1 2 3

6 1 2 3

8 1 3 4

The current version of AES, of course, only allows a
block size of 128 bits (Nb = 4) so that C1=1, C2=2, and
C3=3. The diagram below shows the effect of the
ShiftRows transformation on State s:

State s

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

---------no shift ----->

--> left-shift by C1(1) -->

--> left-shift by C2(2) -->

--> left-shift by C3(3) -->

State s'

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

The MixColumns transformation
The mix columns (called MixColumn in Rijndael)
transformation uses a mathematical function to
transform the values of a given column within a State,
acting on the four values at one time as if they
represented a four-term polynomial. In essence, if you
think of MixColumns as a function, this could be
written:
s'i,c = MixColumns (si,c)
for 0<=i<=3 for some column, c. The column position
doesn't change, merely the values within the column.
Round Key generation and the AddRoundKey
transformation
The AES Cipher Key can be 128, 192, or 256 bits in
length. The Cipher Key is used to derive a different key
to be applied to the block during each round of the
encryption operation. These keys are called the Round
Keys and each will be the same length as the block,
i.e., Nb 32-bit words (words will be denoted W).
The AES specification defines a key schedule by which
the original Cipher Key (of length Nk 32-bit words) is
used to form an Expanded Key. The Expanded Key size
is equal to the block size times the number of
encryption rounds plus 1, which will provide Nr+1
different keys. (Note that there are Nr encipherment
rounds but Nr+1 AddRoundKey transformations.)

P.D. Khambre et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3588-3592

3590

Expanded
Key:

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 ... W44 W45 W46 W47 W48 W49 W50 W51

Round
keys:

Round key 0 Round key 1 Round key 2 Round key 3 ... Round key 11 Round key 12

Consider that AES uses a 128-bit block and either 10,
12, or 14 iterative rounds depending upon key length.
With a 128-bit key, for example, we would need 1408
bits of key material (128x11=1408), or an Expanded
Key size of 44 32-bit words (44x32=1408). Similarly, a
192-bit key would require 1664 bits of key material
(128x13), or 52 32-bit words, while a 256-bit key
would require 1920 bits of key material (128x15), or 60
32-bit words. The key expansion mechanism, then,
starts with the 128-, 192-, or 256-bit Cipher Key and
produces a 1408-, 1664-, or 1920-bit Expanded Key,
respectively. The original Cipher Key occupies the first
portion of the Expanded Key and is used to produce the
remaining new key material.
The result is an Expanded Key that can be thought of
and used as 11, 13, or 15 separate keys, each used for
one AddRoundKey operation. These, then, are
the Round Keys. The diagram below shows an example
using a 192-bit Cipher Key (Nk=6), shown in magenta
italics:
The AddRoundKey (called Round Key addition in
Rijndael) transformation merely applies each Round
Key, in turn, to the State by a simple bit-wise exclusive
OR operation. Recall that each Round Key is the same
length as the block.

SUMMARY
Recall from the beginning of the AES overview that the
cipher itself comprises a number of rounds of just a few
functions:
 SubBytes takes the value of a word within a State

and substitutes it with another value by a
predefined S-box

 ShiftRows circularly shifts each row in the State by
some number of predefined bytes

 MixColumns takes the value of a 4-word column
within the State and changes the four values using a
predefined mathematical function

 AddRoundKey XORs a key that is the same length
as the block, using an Expanded Key derived from
the original Cipher Key

As a last and final demonstration of the operation of
AES, above Figure is a pseudocode listing for the
operation of the AES cipher. In the code:
 in[] and out[] are 16-byte arrays with the plaintext

and cipher text, respectively. (According to the
specification, both of these arrays are actually
4*Nb bytes in length but Nb=4 in AES.)

 state[] is a 2-dimensional array containing bytes in
4 rows and 4 columns. (According to the
specification, this arrays is 4 rows by Nb columns.)

 w[] is an array containing the key material and is
4*(Nr+1) words in length. (Again, according to the
specification, the multiplier is actually Nb.)

 AddRoundKey(), SubBytes(), ShiftRows(),
and MixColumns() are functions representing the
individual transformations.

Cipher (byte in[4*Nb], byte out[4*Nb], word
w[Nb*(Nr+1)])
begin
 byte state[4,Nb]

 state = in

 AddRoundKey(state, w)

 for round = 1 step 1 to Nr-1
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state, w+round*Nb)
 end for

 SubBytes(state)
 ShiftRows(state)
 AddRoundKey(state, w+Nr*Nb)

 out = state
end

 AES pseudocode.

IMPLEMENTATIONS

 Optimized Software Implementation. The pure
software implementation is bounded by the
load/store behavior and byte arithmetic of the
algorithm. The encryption requires 774 cycles per
block on a MIPS32 processor and the decryption
requires 837 cycles.

 AES Primitives. This is the simplest form of
Vocal's hardware acceleration. The AES Primitives
extend the capabilities of the MIPS32 processor by
taking advantage of MIPS Technologies CorExtend
capability to decrease the number of cycles to 393
cycles to encrypt and 460 cycles to decrypt per
block on the MIPS32 processor.

 AES Round Accelerator. The Round Accelerator
requires 1024 bytes of local memory, but increases
the performance to 117 cycles per block to encrypt
and 127 cycles per block to decrypt.

 AES 32-bit Block Accelerator. The Block
Accelerator is designed to be a good mid-scale
solution. It uses 2048 bytes of local memory. The
number of cycles to process a block on a MIPS32
cpu falls to 64 cycles for both encryption and
decryption using this implementation.

 AES 32-bit Co-Processor. The Co-Processor
implementation uses 2048 bytes of memory to
deliver performance of 45 cycles per block on the
MIPS32.

 AES 64-bit Co-Processor. The same amount of the
memory is required for the 64-bit implementation,
but the performance increases to just 25 cycles per
block on the MIPS32.

P.D. Khambre et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3588-3592

3591

REFERENCES
[1]International journal on “Security issues in wireless sensor
networks” Issue 1 volume 2 2008.by Zoran S.Bojkovic,Bojan
M.Bakmaz
[2] International journal on “A secure mechanism for data collection
in wireless sensor network “by Yusin Xao Issue 5 volume 2 2011
[3] International journal on “Secure data in wireless sensor network
via DES” volume 1 issue 2 2011 by Vimal Upadhay,Pintu Kashyap
[4] International journal on “Security threats & issues in wireless
sensor networks “Volume 2 issue 1 2012 by D.G.Anand.

P.D. Khambre et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3588-3592

3592

